Control Insteon and X10 Devices From .NET

Have you ever wanted to control your lights and appliances from a .NET application? We’ve just released a new .NET library called FluentDwelling that makes it really easy to write a .NET application that interfaces with Insteon and X10 devices using a SmartHome 2413U:

It’s designed to be really easy to use:

DeviceBase device;
    .TryConnectToDevice("55.55.55", out device))
    // support auto-discovery of device type:
    if(device is LightingControl)
        var lightingControl = device as LightingControl;
    else if(device is IrrigationControl)
        var irrigationControl = device as IrrigationControl;

It’s free and open source! Go get FluentDwelling now!


No Comments

Problems with 64-bit Operating Systems

If you tried SoapBox Snap with a 64-bit operation system and had a problem, we apologize. If you try the new download, it should work better for you.

No Comments

Use PC Game Controllers as Input Devices

We’ve just put a new version of SoapBox Snap up for download (version 2011.03.01). This version adds a new I/O driver for DirectX compatible game controllers.

If you have an old joystick, racing wheel, or game pad for your PC lying around, you can now use it to drive discrete and analog inputs in your SoapBox Snap ladder logic program. SoapBox Snap will automatically detect your game controllers the same way it auto-detects Phidgets devices:

  1. Connect to the runtime
  2. Under the runtime node, right click on Device Configuration
  3. Click the Read Configuration option

That forces you to disconnect from the runtime after reading the configuration. You can just re-connect and choose to download your application if you want to try it out right away. You will be able to see the discrete inputs light up when you press the buttons on your controller. To see the analog inputs (axes) working, you’ll need to use those somewhere in your logic.

What’s next? New drivers for even more I/O hardware… stay tuned!


No Comments

SoapBox Core 2010.11.29 Released!

I’ve just pushed the latest version of SoapBox Core (2010.11.29) and the Pin Ball Demo to the SVN repository.  You can download them from the downloads page.  This release has a handful of new features.  You can read the details at


No Comments

New Math and Comparison Instructions

Version 2010.11.15 of SoapBox Snap is now available for download. It includes 11 new Math and Comparison operators for the ladder logic module. This fills in most of the missing functionality you need to make good use of the NUMBER type in your applications.

Let’s step back and talk about types for a minute. SoapBox Snap only has 3 types:


That’s a really lean type system compared to most PLCs (but of course, “Snap is not a PLC”). If you’ve done much traditional PLC programming, you would expect to see a dozen different numeric types, like BYTE, INT, UINT, DINT, UDINT, not to mention SINGLE, and DOUBLE precision floating point numbers, and various BCD numbers if you’re really lucky. At first when I was writing SoapBox Snap, I planned to support every data type in the IEC-61131-3 standard, but I realized all those types only existed because traditional PLCs are so memory constrained that you had to take memory usage and low level memory management into account when you use them. One of the goals of SoapBox Snap is to remove the burden of memory management from the programmer. That’s why there’s only one NUMBER type and it can represent any number.

SoapBox Snap already used the NUMBER type in the Counter and Timer instructions that shipped with the first version. The counters expose a Count output that you can access just like any other signal. Likewise, the timers expose an Elapsed output (in milliseconds). Of course, all analog inputs in your Device Configuration also expose NUMBER type signals, and all analog outputs consume NUMBER type signals, so now you can manipulate all of these signals with the new instructions below.


The new math instructions carry out your four basic mathematical operations: add, subtract, multiply, and divide. Each takes two NUMBER inputs, and produces a single NUMBER output. Since a result is generated, all of these instructions are considered “right hand” instructions (that is, they show up on the right hand side of the rung). They all use the rung-in condition to enable the operation. If the rung condition feeding the instruction is false, the result stays the same as it was during the previous scan. If the rung condition is true, the result is overwritten with the new result of applying the operation to the two inputs.

There is one exception: if the second input to the divide instruction is zero, it disables the instruction from executing, so the result will stay the same as the last scan. There are various alternative ways it could handle a divide-by-zero condition (throwing an error, setting the result to zero or infinity, etc.), but I thought that holding the last “good” value was the most reasonable thing to do.


These are your basic comparison operators. They are all “left hand” instructions, so they go on the left side of the rung, where you normally use contacts. Each one takes two NUMBER inputs, just like a Math instruction, but doesn’t generate an output, other than the rung-out condition. If the rung-in condition is false, the rung-out condition will always be false. If the rung-in condition is true, the instruction will read both inputs, apply the comparison, and set the rung-out condition to the result of the comparison. Therefore you can chain these comparison operators together on the same rung (for instance to say A > 250 and A < 750).

Choose Number

Similar to the Math instructions (in that it has two NUMBER inputs and one NUMBER result) is the new Choose Number instruction. This instruction copies the first input to the result if the rung-in condition is true, and otherwise it copies the second input to the result. If you use this instruction in combination with a Greater Than instruction, then you can easily implement a Maximum instruction. That is, if A > B, return A, else return B.

What’s Next?

There are some small features we’re going to be adding to SoapBox Core shortly. After that we’ll come back to adding some new features to SoapBox Snap, so keep watching this space for updates. Remember, contact us if you have any questions, or post a question on the support site. Most of you like to email me directly, which is just fine. :)


No Comments

No tags, symbols, or memory files?

So, we’ve had a couple of weeks for people to try out SoapBox Snap, and already had some positive comments, which we really appreciate. If you’ve tried SoapBox Snap and you have any comments, suggestions, or questions, by all means shoot us an email at, or ask a question on our Q&A site

Work is still progressing on more features for SoapBox Snap. The next thing that’s going to be released is a set of instructions for manipulating numeric signals, like analog inputs (i.e. Add, Subtract, Multiply, Divide, etc.). I decided to take a quick detour and write some better unit tests around the ladder logic module so I don’t end up breaking anything when I add new features, so it’s still going to take a few weeks to get the new version out. However, I wanted to touch base with the people who’ve tried it, and thought it was a good time to cover some background information:

If you’ve come from the PLC world, one of the biggest differences between SoapBox Snap and a PLC is that there is no “memory management” involved in SoapBox Snap. When you create a coil on a page, it implicitly allocates the memory to hold the state of that instruction (internally it’s called a “signal”, but externally, it’s really just the “coil state”). This really didn’t require that much effort from the programming side, but I really like how it improves the programming experience. Managing memory manually always seemed like a tedious and unnecessary burden on the programmer in modern PLCs, so this is my way to see if we can get away from it. (I really like being able to drop a Rising Edge instruction onto a page without declaring the memory location to hold the state.)

The only place where it takes some adjustment is the Set/Reset instruction. Traditionally set/reset type instructions are broken up into two instructions in a PLC, but if you want to follow an “implicit” memory management model, then you have to encapsulate the entire state into one instruction. That’s why the Set/Reset instruction in SoapBox Snap uses the rung-in condition to set the state, and a separate Reset input to clear it. I’m happy with how it turned out, so it doesn’t seem to make much of a difference.

Implicit memory management has created another positive side-effect: all the ladder logic you write in SoapBox Snap follows the functional programming paradigm, which is a subset of the declarative programming paradigm. I believe that true ladder logic is a declarative syntax (output A should be on when inputs X and Y are on) rather than an imperative syntax (if input X is on and input Y is on then change output A to on, otherwise turn it off). In fact, the declarative nature of ladder logic is what makes it more readable to people with an electrical background, rather than a programming background.

Having an instruction set that allows multiple instructions to mutate the same global memory is a recipe for unreadable logic. The entire history computer languages, in fact, has been a slow progression from imperative languages (FORTRAN, C, BASIC) towards more functional languages (Lisp, Scheme, Caml, Haskell) and most modern languages (C#, VB.Net, Java, Ruby, Python, F#) are now full of functional constructs added to otherwise imperative languages.

Imperative languages exist because they’re closer to the way the computer actually works. This was important back when hardware performance was at a premium, and nowhere was hardware at such a premium as in PLC hardware. However, it’s time to admit that computing hardware is extremely cheap, and we can throw away the imperative instructions from our ladder logic. In the next release of SoapBox Snap, you’ll see that the math instructions don’t need to operate on some global memory location. If you have an analog input A, you can have an instruction that subtracts an offset (A-B) and this subtract instruction will create a new value, C. There is no need to overwrite a memory location with the new result. The instruction holds the result of the subtraction and the result can be referenced by any other instruction in the system.

If there was one thing I hope we see in PLC systems in the future, it’s this “implicit memory management” feature. It offers a significant jump forward in both readability and productivity, and I hope it catches on.


No Comments

Install File Troubles?

If you were having problems with the installation, I apologize. I found and fixed a couple of problems with the setup package and I’ve uploaded a new version to the release folder, so if you click on the download button in the product page, you should get the right file now.

In case you have a caching issue and you end up downloading the same file again, here’s a temporary direct download link to version 2010.10.06.

For anyone interested, the problem was that SoapBox Snap was using an older version of NLog, an error logging library that had a dependency on the “Extended” .NET 4 framework. Most computers have .NET 4 installed already, but they have the “Client Profile”, not the “Extended” one. Unfortunately, the installer was sending you to the page to download the Client Profile, which didn’t help. I upgraded the NLog library to one that no longer has a dependency on the Extended framework, so it should go smoother. I also recompiled everything explicitly for x86 architectures (instead of x64) since the Phidgets library may be dependent on x86 and might be causing some issues on those of you with fancy new 64 bit computers. By making x86 explicit, it forces a 64 bit operating system to load it into a compatibility mode, which is generally what you want.


No Comments

SoapBox Snap Released!

This is the official launch of SoapBox Snap (version 2010.10.05). It’s a completely free and open ladder logic editor and “soft” runtime for your PC:

SoapBox Snap

Some fun things you could do with it:

  • Control home appliances and lights
  • Control your sprinkler system
  • Amateur Robotics
  • Turn things on and off from Twitter
  • Model railroad control

It’s up to you to be creative. If you have ideas, let us know!

You can download SoapBox Snap from its product page. Have fun!


No Comments

SoapBox Core 2010.09.11 Released!

I’ve just pushed the latest version of SoapBox Core (2010.09.11) and the Pin Ball Demo to the SVN repository.  You can download them from the downloads page.  This release has a handful of new features.  You can read the details at


No Comments

SoapBox Core 2010.06.13 Released!

I’ve just pushed the latest version of SoapBox Core (2010.06.13) and the Pin Ball Demo to the SVN repository.  You can download them from the downloads page.  This release has some new features and now targets .NET 4 and Visual Studio 2010.  You can read the details


No Comments